Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542266

RESUMO

Numerous studies have indicated a link between vaccines and the exacerbation of autoimmune diseases including rheumatoid arthritis (RA). However, there is no consensus in clinical practice regarding the optimal timing of immunization. Therefore, this study aimed to investigate the impact of the 3Fluart influenza vaccine on the complete Freund's adjuvant (CFA)-induced chronic arthritis rat model and to identify new biomarkers with clinical utility. CFA was injected into the plantar surface of one hind paw and the root of the tail on day 0, and the tail root injection was repeated on day 1. Flu vaccination was performed on day 1 or 7. Paw volume was measured by plethysmometry, mechanonociceptive threshold by dynamic plantar aesthesiometry, neutrophil myeloperoxidase (MPO) activity, and vascular leakage using in vivo optical imaging throughout the 21-day experiment. Inflammatory markers were determined by Western blot and histopathology. CFA-induced swelling, an increase in MPO activity, plasma extravasation in the tibiotarsal joint. Mechanical hyperalgesia of the hind paw was observed 3 days after the injection, which gradually decreased. Co-administration of the flu vaccine on day 7 but not on day 1 resulted in significantly increased heme oxygenase 1 (HO-1) expression. The influenza vaccination appears to have a limited impact on the progression and severity of the inflammatory response and associated pain. Nevertheless, delayed vaccination could alter the disease activity, as indicated by the findings from assessments of edema and inflammatory biomarkers. HO-1 may serve as a potential marker for the severity of inflammation, particularly in the case of delayed vaccination. However, further investigation is needed to fully understand the regulation and role of HO-1, a task that falls outside the scope of the current study.


Assuntos
Artrite Experimental , Influenza Humana , Ratos , Animais , Humanos , Artrite Experimental/metabolismo , Adjuvante de Freund/efeitos adversos , Hiperalgesia/metabolismo , Inflamação , Vacinação , Progressão da Doença
2.
Front Immunol ; 14: 1182278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234175

RESUMO

Objective: Despite intensive research on rheumatoid arthritis, the pathomechanism of the disease is still not fully understood and the treatment has not been completely resolved. Previously we demonstrated that the GTPase-activating protein, ARHGAP25 has a crucial role in the regulation of basic phagocyte functions. Here we investigate the role of ARHGAP25 in the complex inflammatory process of autoantibody-induced arthritis. Methods: Wild-type and ARHGAP25 deficient (KO) mice on a C57BL/6 background, as well as bone marrow chimeric mice, were treated i.p. with the K/BxN arthritogenic or control serum, and the severity of inflammation and pain-related behavior was measured. Histology was prepared, leukocyte infiltration, cytokine production, myeloperoxidase activity, and superoxide production were determined, and comprehensive western blot analysis was conducted. Results: In the absence of ARHGAP25, the severity of inflammation, joint destruction, and mechanical hyperalgesia significantly decreased, similarly to phagocyte infiltration, IL-1ß, and MIP-2 levels in the tibiotarsal joint, whereas superoxide production or myeloperoxidase activity was unchanged. We observed a significantly mitigated phenotype in KO bone marrow chimeras as well. In addition, fibroblast-like synoviocytes showed comparable expression of ARHGAP25 to neutrophils. Significantly reduced ERK1/2, MAPK, and I-κB protein signals were detected in the arthritic KO mouse ankles. Conclusion: Our findings suggest that ARHGAP25 has a key role in the pathomechanism of autoantibody-induced arthritis in which it regulates inflammation via the I-κB/NF-κB/IL-1ß axis with the involvement of both immune cells and fibroblast-like synoviocytes.


Assuntos
Artrite Experimental , Superóxidos , Animais , Camundongos , Peroxidase/efeitos adversos , Camundongos Endogâmicos C57BL , Inflamação
3.
Cells ; 11(5)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269413

RESUMO

Background: Adult-born neurons of the hippocampal dentate gyrus play a role in specific forms of learning, and disturbed neurogenesis seems to contribute to the development of neuropsychiatric disorders, such as major depression. Neuroinflammation inhibits adult neurogenesis, but the effect of peripheral inflammation on this form of neuroplasticity is ambiguous. Objective: Our aim was to investigate the influence of acute and chronic experimental arthritis on adult hippocampal neurogenesis and to elucidate putative regulatory mechanisms. Methods: Arthritis was triggered by subcutaneous injection of complete Freund's adjuvant (CFA) into the hind paws of adult male mice. The animals were killed either seven days (acute inflammation) or 21 days (chronic inflammation) after the CFA injection. Behavioral tests were used to demonstrate arthritis-related hypersensitivity to painful stimuli. We used in vivo bioluminescence imaging to verify local inflammation. The systemic inflammatory response was assessed by complete blood cell counts and by measurement of the cytokine/chemokine concentrations of TNF-α, IL-1α, IL-4, IL-6, IL-10, KC and MIP-2 in the inflamed hind limbs, peripheral blood and hippocampus to characterize the inflammatory responses in the periphery and in the brain. In the hippocampal dentate gyrus, the total number of newborn neurons was determined with quantitative immunohistochemistry visualizing BrdU- and doublecortin-positive cells. Microglial activation in the dentate gyrus was determined by quantifying the density of Iba1- and CD68-positive cells. Results: Both acute and chronic arthritis resulted in paw edema, mechanical and thermal hyperalgesia. We found phagocytic infiltration and increased levels of TNF-α, IL-4, IL-6, KC and MIP-2 in the inflamed hind paws. Circulating neutrophil granulocytes and IL-6 levels increased in the blood solely during the acute phase. In the dentate gyrus, chronic arthritis reduced the number of doublecortin-positive cells, and we found increased density of CD68-positive macrophages/microglia in both the acute and chronic phases. Cytokine levels, however, were not altered in the hippocampus. Conclusions: Our data suggest that acute peripheral inflammation initiates a cascade of molecular and cellular changes that eventually leads to reduced adult hippocampal neurogenesis, which was detectable only in the chronic inflammatory phase.


Assuntos
Artrite Experimental , Fator de Necrose Tumoral alfa , Animais , Citocinas/metabolismo , Proteína Duplacortina , Adjuvante de Freund , Hipocampo/metabolismo , Inflamação , Interleucina-4 , Interleucina-6 , Masculino , Camundongos , Neurogênese/fisiologia
4.
Biomedicines ; 9(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209525

RESUMO

SZV 1287 (3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime) is a novel multi-target candidate under preclinical development for neuropathic pain. It inhibits amine oxidase copper containing 3, transient receptor potential ankyrin 1 and vanilloid 1 (TRPV1) receptors. Mainly under acidic conditions, it is transformed to the cyclooxygenase inhibitor oxaprozin, which is ineffective for neuropathy. Therefore, an enterosolvent capsule is suggested for oral formulation, which we investigated for nociception, basic kinetics, and thermoregulatory safety in mice. The antihyperalgesic effect of SZV 1287 (10, 20, 50, and 200 mg/kg, p.o.) was determined in partial sciatic nerve ligation-induced traumatic neuropathy by aesthesiometry, brain and plasma concentrations by HPLC, and deep body temperature by thermometry. Its effect on proton-induced TRPV1 activation involved in thermoregulation was assessed by microfluorimetry in cultured trigeminal neurons. The three higher SZV 1287 doses significantly, but not dose-dependently, reduced neuropathic hyperalgesia by 50% of its maximal effect. It was quickly absorbed; plasma concentration was stable for 2 h, and it entered into the brain. Although SZV 1287 significantly decreased the proton-induced TRPV1-mediated calcium-influx potentially leading to hyperthermia, it did not alter deep body temperature. Oral SZV 1287 inhibited neuropathic hyperalgesia and, despite TRPV1 antagonistic action and brain penetration, it did not influence thermoregulation, which makes it a promising analgesic candidate.

5.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567493

RESUMO

Capsaicin-sensitive peptidergic sensory nerves play complex, mainly protective regulatory roles in the inflammatory cascade of the joints via neuropeptide mediators, but the mechanisms of the hyperacute arthritis phase has not been investigated. Therefore, we studied the involvement of these afferents in the early, "black box" period of a rheumatoid arthritis (RA) mouse model. Capsaicin-sensitive fibres were defunctionalized by pretreatment with the ultrapotent capsaicin analog resiniferatoxin and arthritis was induced by K/BxN arthritogenic serum. Disease severity was assessed by clinical scoring, reactive oxygen species (ROS) burst by chemiluminescent, vascular permeability by fluorescent in vivo imaging. Contrast-enhanced magnetic resonance imaging was used to correlate the functional and morphological changes. After sensory desensitization, both early phase ROS-burst and vascular leakage were significantly enhanced, which was later followed by the increased clinical severity scores. Furthermore, the early vascular leakage and ROS-burst were found to be good predictors of later arthritis severity. We conclude that the anti-inflammatory role of peptidergic afferents depends on their activity in the hyperacute phase, characterized by decreased cellular and vascular inflammatory components presumably via anti-inflammatory neuropeptide release. Therefore, these fibres might serve as important gatekeepers in RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Capsaicina/farmacologia , Inflamação Neurogênica/prevenção & controle , Neuropeptídeos/farmacologia , Fármacos do Sistema Sensorial/farmacologia , Animais , Artrite Experimental/etiologia , Artrite Experimental/patologia , Artrite Reumatoide/etiologia , Artrite Reumatoide/patologia , Diterpenos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
6.
Biomed Pharmacother ; 134: 111105, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33338750

RESUMO

Diabetes mellitus is a common metabolic disease leading to hyperglycemia due to insufficient pancreatic insulin production or effect. Amine oxidase copper containing 3 (AOC3) is an enzyme that belongs to the semicarbazide-sensitive amine oxidase family, which may be a novel therapeutic target to treat diabetic complications. We aimed to explore the effects of AOC3 inhibition and to test the actions of our novel AOC3 inhibitor multi-target drug candidate, SZV 1287, compared to a selective reference compound, LJP 1207, in an 8-week long insulin-controlled streptozotocin (STZ)-induced (60 mg/kg i.p.) rat diabetes model. Both AOC3 inhibitors (20 mg/kg, daily s.c. injections) were protective against STZ-induced pancreatic beta cell damage determined by insulin immunohistochemistry and radioimmunoassay, neuropathic cold hypersensitivity measured by paw withdrawal latency decrease from 0 °C water, and retinal dysfunction detected by electroretinography. SZV 1287 showed greater inhibitory effects on beta cell damage, and reduced retinal apoptosis shown by histochemistry. Mechanical hypersensitivity measured by aesthesiometry, cardiac dysfunction and nitrosative stress determined by echocardiography and immunohistochemistry/Western blot, respectively, serum Na+, K+, fructosamine, and urine microalbumin, creatinine, total protein/creatinine ratio alterations did not develop in response to diabetes. None of these parameters were influenced by the treatments except for SZV 1287 reducing serum fructosamine and LJP 1207 increasing urine creatinine. We provide the first evidence for protective effects of AOC3 inhibition on STZ-induced pancreatic beta cell damage, neuropathic cold hypersensitivity and diabetic retinal dysfunction. Long-term treatment with our novel multi-target analgesic candidate, SZV 1287, is safe and effective also under diabetic conditions.


Assuntos
Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Oxazóis/farmacologia , Oximas/farmacologia , Amina Oxidase (contendo Cobre)/metabolismo , Analgésicos/farmacologia , Animais , Moléculas de Adesão Celular/metabolismo , Complicações do Diabetes/prevenção & controle , Diabetes Mellitus Experimental/prevenção & controle , Nefropatias Diabéticas/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Humanos , Hidrazinas/farmacologia , Insulina/metabolismo , Células Secretoras de Insulina , Masculino , Ratos , Ratos Sprague-Dawley , Estreptozocina/efeitos adversos
7.
ChemMedChem ; 15(24): 2470-2476, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32935925

RESUMO

The radiosynthesis, as well as the in vivo and ex vivo biodistribution of the 11 C radiolabelled 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime (6, [11 C]SZV 1287) are reported. SZV 1287 is a novel semicarbazide-sensitive amine oxidase (SSAO) inhibitor and a promising candidate to be a novel analgesic for the treatment of neuropathic pain. Its radiolabelling was developed via a four-step radiosynthesis which started from the reaction of a Grignard reagent with [11 C]CO2 to produce [11 C]oxaprozin (3). In the next step this carboxylic acid 3 was directly reduced to yield the corresponding aldehyde, which was then converted into the oxime. [11 C]SZV 1287 was administered to male NMRI mice. The animals were examined with dynamic PET/MR imaging for 90 minutes. Biodistribution studies were performed at 10, 30, 60 and 120 minutes post injection. The accumulation of the labelled compound was observed in the brain of the animals. The main excretion pathway was found to be through the liver and intestines. These studies provide preliminary information for pharmacokinetic characterization of the SZV 1287.


Assuntos
Oxazóis/química , Oximas/química , Compostos Radiofarmacêuticos/química , Animais , Radioisótopos de Carbono/química , Masculino , Camundongos , Oxazóis/síntese química , Oxazóis/farmacocinética , Oximas/síntese química , Oximas/farmacocinética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...